Well-Posedness Theory for Aggregation Sheets
نویسندگان
چکیده
منابع مشابه
Well-Posedness Theory for Aggregation Sheets
In this paper, we consider distribution solutions to the aggregation equation ρt + div(ρu) = 0, u = −∇V ∗ρ in R where the density ρ concentrates on a co-dimension one manifold. We show that an evolution equation for the manifold itself completely determines the dynamics of such solutions. We refer to such solutions aggregation sheets. When the equation for the sheet is linearly well-posed, we s...
متن کاملWell-Posedness of Vortex Sheets with Surface Tension
We prove well-posedness for the initial value problem for a vortex sheet in 3D fluids, in the presence of surface tension. We first reformulate the problem by making a favorable choice of variables and parameterizations. We then perform energy estimates for the evolution equations. It is important to note that the Kelvin-Helmholtz instability is present for the vortex sheet in the absence of su...
متن کاملWell-posedness for Hall-magnetohydrodynamics
We prove local existence of smooth solutions for large data and global smooth solutions for small data to the incompressible, resitive, viscous or inviscid Hall-MHD model. We also show a Liouville theorem for the stationary solutions. Acknowledgements: The first and third authors wish to thank the hospitality of the Institut de Mathématiques de Toulouse, France, where this research has been car...
متن کاملWell-posedness for General 2
We consider the Cauchy problem for a strictly hyperbolic 2 2 system of conservation laws in one space dimension u t + F (u)] x = 0; u(0; x) = u(x); (1) which is neither linearly degenerate nor genuinely non-linear. We make the following assumption on the characteristic elds. If r i (u); i = 1; 2; denotes the i-th right eigenvector of DF (u) and i (u) the corresponding eigenvalue, then the set f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications in Mathematical Physics
سال: 2012
ISSN: 0010-3616,1432-0916
DOI: 10.1007/s00220-012-1634-5